Publications

Recent Advances in Monofluorinated Carbenes, Carbenoids, Ylides, and Related Species

Sperga, A.; Veliks, J. Chem. Eur. J. 2023, asap. DOI: 10.1002/chem.202301851

 

Photoredox-Catalyzed Direct C-H Monofluoromethylation of Heteroarenes

Ramkumar, N.; Plantus, K.; Ozola, M.; Mishnev, A.; Nikolajeva, V.; Senkovs, M.; Ošeka, M.; Veliks, J. New J. Chem. 2023, asap. DOI: 10.1039/D3NJ04313D

Visible‐Light Photoredox‐catalyzed Radical Fluoromethoxylation of Olefins

Ramkumar, N.; Sperga, A.; Belyakov, S.; Mishnev, A.; Zacs, D.; Veliks, J. Adv. Synth. Catal. 2023, 365, 1405-1412. DOI: 10.1002/adsc.202300130

Synthetic Access to Fluorocyclopropylidenes

Melngaile, R.; Videja, M.; Kuka, J.; Kinens, A.; Zacs, D.; Veliks, J. Org. Lett. 2023, 13, 2280–2284. DOI:10.1021/acs.orglett.3c00579

 

Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy-monofluoromethylation of Alkenes

Ramkumar, N.; Baumane, L.; Zacs, D.; Veliks, J. Angew. Chem. Int. Ed. 2023, 62, e202219027. DOI:10.1002/anie.202219027

 

Iron-Catalyzed Fluoromethylene Transfer from a Sulfonium Reagent

Sperga, A.; Zacs, D.; Veliks, J. Org. Lett. 2022, 24, 4474–4478. DOI:10.1021/acs.orglett.2c01757

Figure 1

 

Synthetic Applications of Monofluoromethylsulfonium Salts

Melngaile, R.; Veliks, J. Synthesis 2021, 53, 4549-4558. DOI:10.1055/a-1548-8240

https://www.thieme-connect.de/media/synthesis/EFirst/i_r0292_ga_10-1055_a-1548-8240.gif


 

Sulfonium, (Fluoromethyl)phenyl(2,3,4,5-tetramethylphenyl)-, Tetrafluoroborate(1-) (1:1)

Melngaile, R.; Veliks, J. G. Encycl. Reagents Org. Synth., 2021, pp 1-4. DOI:10.1002/047084289X.rn02379

https://onlinelibrary.wiley.com/cms/asset/f974ec63-922a-4ebf-9a74-62402071aee9/nrn02379sf.001.gif


 

Monofluorinated 5-membered rings via fluoromethylene transfer: synthesis of monofluorinated isoxazoline N-oxides

Sperga, A.; Kazia, A.; Veliks, J. Org. Biomol. Chem., 2021, 19, 2688-2691. DOI:10.1039/D1OB00270H

https://osmg.osi.lv/wp-content/uploads/2021/03/Veliks.OBC2021-2.png

 

Residual Solvent Signal of CDCl3 as a qNMR Internal Standard for Application in Organic Chemistry Laboratory

Muhamadejev, R.; Melngaile, R.; Paegle, P.; Zibarte, I.; Petrova, M.; Jaudzems, K.; Veliks, J. J. Org. Chem., 2021, 86, 3890-3896. DOI:10.1021/acs.joc.0c02744

 

Optimized Monofluoromethylsulfonium Reagents for Fluoromethylene-Transfer Chemistry

Sperga, A.; Melngaile, R.; Kazia, A.; Belyakov, S.; Veliks, J. J. Org. Chem., 2021, 86, 3196–3212. DOI:10.1021/acs.joc.0c02561

 

trans-Fluorine Effect in Cyclopropane: Diastereoselective Synthesis of Fluorocyclopropyl Cabozantinib Analogs

Veliks, J.; Videja, M., Kinens, A.; Bobrovs, R.; Priede, M., Kuka, J. ACS Med. Chem. Lett., 2020, 11(11), 2146-2150. DOI:10.1021/acsmedchemlett.0c00220

 

Johnson–Corey–Chaykovsky Fluorocyclopropanation of Double Activated Alkenes: Scope and Limitations

Kazia, A.; Melngaile, R.; Mishnev, A.; Veliks, J. Org. Biomol. Chem. 2020, 18, 1384-1388. DOI:10.1039/C9OB02712B

 

Diastereoselective Monofluorocyclopropanation Using Fluoromethylsulfonium Salts

Melngaile, R.; Sperga, A.; Baldridge, K. K.; Veliks, J. Org. Lett. 2019, 21,7174-7178. DOI:10.1021/acs.orglett.9b02867

https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/orlef7/2019/orlef7.2019.21.issue-17/acs.orglett.9b02867/20190829/images/medium/ol9b02867_0007.gif

 

Fluoromethylene Transfer from Diarylfluoromethylsulfonium Salts: Synthesis of Fluorinated Epoxides

Veliks, J.; Kazia, A. Chem. Eur. J., 2019, 25, 3786 –3789. DOI:10.1002/chem.201900349

https://chemistry-europe.onlinelibrary.wiley.com/cms/asset/209abf44-670d-4990-ac79-ef063ba289f7/chem201900349-toc-0001-m.jpg

 

Enantioselective Rhodium-Catalysed Insertion of Trifluorodiazoethanes into Tin Hydrides

Hyde, S.; Veliks, J.; Ascough, D.M.; Szpera, R.; Paton, R.S.; Gouverneur, V. Tetrahedron, 2019, 75, 17-25. DOI:10.1016/j.tet.2018.11.022

https://ars.els-cdn.com/content/image/1-s2.0-S0040402018313620-fx1.jpg

 

Copper-Catalyzed Insertion into Heteroatom-Hydrogen Bonds with Trifluorodiazoalkanes

Hyde, S.; Veliks, J.; Liégault, B.; Grassi, D.; Taillefer, M.; Gouverneur, V. Angew. Chem. Int. Ed., 2016, 55, 3785-3789. DOI:10.1002/anie.201511954

https://osmg.osi.lv/wp-content/uploads/2019/01/Veliks.jpg

 

Towards the Molecular Borromean Link with Three Unequal Rings: Double-Threaded Ruthenium(II) Ring-in-Ring Complexes

Veliks, J.; Seifert, H.M.; Frantz, D.K.; Klosterman, J.K.; Tseng, J.-C.; Linden, A.; Siegel, J.S. Org. Chem. Front., 2016, 3, 667–672. DOI:10.1039/c6qo00025h

https://pubs.rsc.org/en/Image/Get?imageInfo.ImageType=GA&imageInfo.ImageIdentifier.ManuscriptID=C6QO00025H

 

Conformations of Large Macrocycles and Ring-in-Ring Complexes

Klosterman, J.K.; Veliks, J.; Frantz, D.K.; Yasui, Y.; Loepfe, M.; Zysman-Colman, E.; Linden, A.; Siegel, J.S. Org. Chem. Front., 2016, 3, 661-666. DOI:10.1039/c6qo00024j

https://pubs.rsc.org/en/Image/Get?imageInfo.ImageType=GA&imageInfo.ImageIdentifier.ManuscriptID=C6QO00024J

 

Three Steps in One Pot: Synthesis of Linear Bilateral Extended 2,2′:6′,2″-Terpyridineruthenium(II) Complexes

Veliks, J.; Blacque, O.; Siegel, J.S. Inorg. Chem., 2014, 53, 12122-12126. DOI:10.1021/ic501946f

https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/inocaj/2014/inocaj.2014.53.issue-22/ic501946f/20141111/images/medium/ic-2014-01946f_0008.gif


 

Linear Bilateral Extended 2,2′:6′,2′′-Terpyridine Ligands, Their Coordination Complexes and Heterometallic Supramolecular Networks

Veliks, J.; Tseng, J.-C.; Arias, K.I.; Weisshar, F.; Linden, A.; Siegel, J.S. Chem. Sci., 2014, 5, 4317–4327. DOI:10.1039/c4sc01025f

https://pubs.rsc.org/en/Image/Get?imageInfo.ImageType=GA&imageInfo.ImageIdentifier.ManuscriptID=C4SC01025F